在面试中,经常被问的一个问题就是:你了解C++11哪些新特性?一般而言,回答以下四个方面就够了:

1、“语法糖”

这部分内容一般是一句话带过的,但是有时候也需要说一些,比较重重要的就是auto和lambda。

auto自动类型推导

C语言也有auto关键字,但是其含义只是与static变量做一个区分,一个变量不指定的话默认就是auto。。因为很少有人去用这个东西,所以在C++11中就把原有的auto功能给废弃掉了,而变成了现在的自动类型推导关键字。用法很简单不多赘述,比如写一个auto a = 3, 编译器就会自动推导a的类型为int. 在遍历某些STL容器的时候c++lambda表达式,不用去声明那些迭代器的类型,也不用去使用typedef就能很简洁的实现遍历了。

auto的使用有以下两点必须注意:

关于效率: auto实际上实在编译时对变量进行了类型推导,所以不会对程序的运行效率造成不良影响。另外,auto并不会影响编译速度,因为编译时本来也要右侧推导然后判断与左侧是否匹配。

关于具体的推导规则,可以参考这里

lambda表达式

lambda表达式是匿名函数,可以认为是一个可执行体functor,语法规则如下:

[捕获区](参数区){代码区};

auto add = [](int a, int b) {return a + b};

就我的理解而言,捕获的意思即为将一些变量展开使得为lambda内部可见,具体方式有如下几种

一般使用场景:sort等自定义比较函数、用thread起简单的线程。

2. 右值引用与移动语义

右值引用是C++11新特性,它实现了转移语义和完美转发,主要目的有两个方面

移动语义

转移语义可以将资源(堆、系统对象等)从一个对象转移到另一个对象,这样可以减少不必要的临时对象的创建、拷贝及销毁。移动语义与拷贝语义是相对的,可以类比文件的剪切和拷贝。在现有的C++机制中,自定义的类要实现转移语义,需要定义移动构造函数,还可以定义转移赋值操作符。

以string类的移动构造函数为例

MyString(MyString&& str) {
    std::cout << "Move Ctor source from " << str._data << endl;
    _len = str._len;
    _data = str._data;
    str._len = 0;
    str._data = NULL;
}

和拷贝构造函数类似,有几点需要注意:

1、参数(右值)的符号必须是&&

2、参数(右值)不可以是常量,因为我们需要修改右值

3、参数(右值)的资源链接和标记必须修改,否则,右值的析构函数就会释放资源。转移到新对象的资源也就无效了。

标准库函数std::move — 将左值变成一个右值

编译器只对右值引用才能调用移动构造函数,那么如果已知一个命名对象不再被使用,此时仍然想调用它的移动构造函数,也就是把一个左值引用当做右值引用来使用,该怎么做呢?用std::move,这个函数以非常简单的方式将左值引用转换为右值引用。

完美转发 Perfect Forwarding

完美转发使用这样的场景:需要将一组参数原封不动地传递给另一个函数。原封不动不仅仅是参数的值不变,在C++中还有以下的两组属性:

3、智能指针

核心思想:为防止内存泄露等问题,用一个对象来管理野指针,使得在该对象构造时获得该指针管理权,析构时自动释放(delete).

基于此思想C++98提供了第一个智能指针:auto_ptr

auto_ptr基于所有权转移的语义,即将一个就的auto_ptr赋值给另外一个新的auto_ptr时c++lambda表达式,旧的那一个就不再拥有该指针的控制权(内部指针被赋值为null),那么这就会带来一些根本性的破绽:

因为auto_ptr的各种bug,C++11标准基本废弃了这种类型的智能指针,转而带来了三种全新的智能指针:

展现知识广度:Java等语言的中垃圾回收机制

垃圾收集器将内存视为一张有向可达图,该图的节点被分成一组根节点和一组堆节点。每个堆节点对应一个内存分配块,当存在一条从任意根节点出发到达某堆节点p的有向路径时,我们就说节点p是可达的。在任意时刻,不可达节点属于垃圾。垃圾收集器通过维护这一张图,并通过定期地释放不可达节点并将它们返回给空闲链表,来定期地回收它们。

所以,聊到这里还可以引申malloc的分配机制、伙伴系统、虚拟内存等等概念

这里给出一个shared_ptr的简单实现:

class Counter {
    friend class SmartPointPro;
public:
    Counter(){
        ptr = NULL;
        cnt = 0;
    }
    Counter(Object* p){
        ptr = p;
        cnt = 1;
    }
    ~Counter(){
        delete ptr;
    }

private:
    Object* ptr;
    int cnt;
};

class SmartPointPro {
public:
    SmartPointerPro(Object* p){
        ptr_counter = new Counter(p);
    }
    SmartPointerPro(const SmartPointerPro &sp){
        ptr_counter = sp.ptr_counter;
        ++ptr_counter->cnt;
    }
    SmartPointerPro& operator=(const SmartPointerPro &sp){
        ++sp.ptr_counter->cnt;
        --ptr_counter.cnt;
        if(ptr_counter.cnt == 0)
            delete ptr_counter;
        ptr_counter = sp.ptr_counter;
    }
    ~SmartPointerPro(){
        --ptr_counter->cnt;
        if(ptr_counter.cnt == 0)
            delete ptr_counter;
    }
private:
    Counter *ptr_counter;
};

需要记住的事,在以下三种情况下会引起引用计数的变更:

1、调用构造函数时:SmartPointer p(new Object());

2、赋值构造函数时:SmartPointer p(const SmartPointer &p);

3、赋值时:SmartPointer p1(new Object()); SmartPointer p2 = p1;

C++11多线程编程

线程#include

std::thread可以和普通函数和lambda表达式搭配使用。它还允许向线程执行函数传递任意多参数。

#include 
void func() {
 // do some work here
}
int main() {
   std::thread thr(func);
   t.join();
   return 0;

上面就是一个最简单的使用std::thread的例子,函数func()在新起的线程中执行。调用join()函数是为了阻塞主线程,直到这个新起的线程执行完毕。线程函数的返回值都会被忽略,但线程函数可以接受任意数目的输入参数。

std::thread的其他成员函数

线程管理函数

除了std::thread的成员函数外,在std::this_thread命名空间也定义了一系列函数用于管理当前线程。

函数名作用

get_id

返回当前线程的id

yield

告知调度器运行其他线程,可用于当前处于繁忙的等待状态。相当于主动让出剩下的执行时间,具体的调度算法取决于实现

sleep_for

指定的一段时间内停止当前线程的执行

sleep_until

停止当前线程的执行直到指定的时间点

至于mutex, condition_variable等同步原语以及future关键字的使用这里不做详细介绍,如果用过自然可以说出,没有用过的话这部分内容也不应该和面试官讨论。

限时特惠:本站每日持续更新海量设计资源,一年会员只需29.9元,全站资源免费下载
站长微信:ziyuanshu688