全文共10788字,预计学习时长20分钟或更长
图片来源:unsplash.com/@lucassankey
人与世界万物的互动会产生大量的时空数据。那么,当我们需要随时调用过去的数据时,改怎么办?尤其是面对各种海量、多维度的数据库,如果没有高效的搜索方法,我们只能望洋兴叹、束手无策。
别担心,本文将用详细的代码mysqljson字段查询,手把手来传授高效搜索法的绝技!
对象数据分类
对象数据可分为两种类型:静态数据(相对静态,例如建筑)和动态数据(例如人的活动和物联网传感器的活动)。
按研究需求分类的索引
时空快照搜索
有些对象以相对较低的频率生成数据。例如,建筑物和道路等惰性物体可能在数年内不会发生任何变化。如果将为这些对象生成的数据写入数据库,并按时间范围查询数据(例如,查询日期为2017-07-01至2017-07-02),则可能找不到与这些对象相关的任何数据。原因很简单,在这段时间内数据库根本没有相关数据输入。
时空行为数据搜索
时空行为数据是指从人的活动等动态对象中获取数据。
例如,分析特定地区特定时间段内某一人群的特征,或者分析大学周边人群在工作日和周末构成的差异。
时空快照不属于本文的讨论范围。现在,我们看看如何搜索时空行为数据。
数据结构
图片来源:unsplash.com/@dekubaum
时空行为数据包含三个属性:时间、空间和对象。
非结构化索引:
create table test( id int8, crt_time timestamp, -- Time pos geometry, -- Location obj jsonb -- Object description );
除了应用于JSON,结构化数据还可以用于对象描述。例如:
create table test( id int8, crt_time timestamp, -- Time pos geometry, -- Location c1 int, -- Some property examples c2 int, c3 text, c4 float8, c5 int, c6 date, c7 text, c8 int, c9 int, c10 int );
时空行为数据的SQL查询实例
select * from test where pos ? < ? and crt_time between ? and ? and ( (c1 = ? and c2 between ? and ?) or c10=?) ... ;
优化方法
考虑运用以下知识:
时间序列BRIN索引
crt_time字段是一个时间序列字段,表示生成数据的时间。在PostgreSQL堆存储中,存储和该字段的值具有很强的线性相关性。
因此,BRIN索引很合适。
使用BRIN索引来代替分区表进行TPC-H测试。大范围搜索的性能甚至优于使用分区表时的功能。
create index idx_test_1 on test using brin(crt_time);
空间索引
显然,空间检索需要空间索引。PostgreSQL中可以使用三种方法实现空间检索。
1. 几何类型的GIST索引
create index idx_test_2 on test using gist(pos);
该索引支持空间KNN搜索和空间位置确定等功能。
2. 几何类型的主索引
create index idx_test_2 on test using spgist(pos);
该索引支持空间KNN搜索和空间位置确定等功能。
3. Geohash和B-tree索引(将经度和纬度转换为Geohash并为hash值创建B-tree索引)。只需使用表达式索引。
create index idx_test_3 on test using btree( ST_GeoHash(pos,15) );
此索引支持前缀搜索(其能落实编码地理信息网格中包含的关系)。它属于有损索引,需要二次过滤。
GiST和SPGiST空间索引能够找到准确的地理位置信息,优于GEOHASH索引。但是,查询信息时需要特别注意。
GIN 索引
此索引类型的目标是对象属性字段JSONB或多个结构化对象属性字段。只需使用GIN索引。
例如:
create extension btree_gin;
非结构化索引:
create index idx_test_4 on test using gin( obj );
结构化索引:
create index idx_test_4 on test using gin( c1,c2,c3,c4,c5,c6,c7,c8,c9 );
BitmapAnd和BitmapOr
在上一节中,根据数据类型和查询需求可以为不同的查询维度选择相应的索引。
但是,可以同时使用这些索引吗? PostgreSQL为多个索引提供bitmapAnd及bitmapOr接口。它们可以组合多个索引,减少需要扫描的数据库数量。
Heap, one square = one page: +---------------------------------------------+ |c____u_____X___u___X_________u___cXcc______u_| +---------------------------------------------+ Rows marked c match customers pkey condition. Rows marked u match username condition. Rows marked X match both conditions. Bitmap scan from customers_pkey: +---------------------------------------------+ |100000000001000000010000000000000111100000000| bitmap 1 +---------------------------------------------+ One bit per heap page, in the same order as the heap Bits 1 when condition matches, 0 if not Bitmap scan from ix_cust_username: +---------------------------------------------+ |000001000001000100010000000001000010000000010| bitmap 2 +---------------------------------------------+ Once the bitmaps are created a bitwise AND is performed on them: +---------------------------------------------+ |100000000001000000010000000000000111100000000| bitmap 1 |000001000001000100010000000001000010000000010| bitmap 2 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |000000000001000000010000000000000010000000000| Combined bitmap +-----------+-------+--------------+----------+ | | | v v v Used to scan the heap only for matching pages: +---------------------------------------------+ |___________X_______X______________X__________| +---------------------------------------------+ The bitmap heap scan then seeks to the start of each page and reads the page: +---------------------------------------------+ |___________X_______X______________X__________| +---------------------------------------------+ seek------->^seek-->^seek--------->^ | | | ------------------------ only these pages read
例如:
select * from test where c1 ... and crt_time between ? and ? and test->> c1 in (?, ? ...);
根据统计数据自动使用适当的索引。如果需要,bitmapAnd和bitmapOr将在多个索引上自动执行合并扫描。跳过不需要扫描的页面,重新检查命中的页面。
堆表存储分级和分区
存储可以分为一级分区或多级分区:
1. 单一分区
例如,按时间划分。
create table test( id int8, crt_time timestamp, -- Time pos geometry, -- Location obj jsonb -- Object description ) PARTITION BY range (crt_time) ; create table test_201701 PARTITION OF test for values FROM ( 2017-01-01 ) TO ( 2017-02-01 ); ......
2. 多层分区
例如,先按时间分区,然后按Geohash划分。
create table test_201701 PARTITION OF test for values FROM ( 2017-01-01 ) TO ( 2017-02-01 ) partition by range(st_geohash(pos,15)); ... create table test_201701_prefix1 PARTITION OF test for values FROM ( xxxx1 ) TO ( xxxx2 ); -- Generate BOX (GRID) on a map, find corresponding boundaries and use -- boundaries as partitioning conditions
使用分区时,如果查询条件包括分区键(如时间和空间范围),相应的分区将自动定位,这即为需要扫描的数据量。
创建面向对象属性的GIN索引,以实现高效查询。
索引分级与分区
与数据一样,索引在不使用分区表的情况下也支持分区逻辑。
空间索引+时间分区
create index idx_20170101 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 ; ... create index idx_20170102 on tbl using gist (pos) where crt_time between 2017-01-02 and 2017-01-03 ; ...
通过使用前述分区索引,可以在输入时间范围后快速定位目标数据,执行空间搜索。
select * from tbl where crt_time between 2017-01-01 and 2017-01-02 -- Time and (pos ?) < ? -- Distance to a point to be searched for and ? -- Other conditions order by pos ? -- Sort by distance limit ?; -- Number of results to be returned
可以使用更多的索引分区,比如用作搜索条件和商店类型的维度(对象属性)(假设它是可枚举的或在范围相对较小的情况下)。
create index idx_20170101_mod0 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 and dtype=0; ... create index idx_20170101_mod1 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 and dtype=1; ...
通过使用前面的分区索引,在输入时间范围或特定条件以执行空间搜索后,可以快速定位目标数据。
select * from tbl where crt_time between 2017-01-01 and 2017-01-02 -- Time and (pos ?) < ? -- Distance to a point to be searched for and dtype=0 -- Object condition and ? -- Other conditions order by pos ? -- Sort by distance limit ?; -- Number of results to be returned
请注意mysqljson字段查询,前面的SQL查询可以实现最佳性能优化。
索引组织形式(或索引结构)可以由逻辑分区重新构造,可以用上述类似的索引创建方法覆盖所有条件。
CTID相交阵列连接扫描
如前所述,BitmapAnd和BitmapOr合并扫描是在多个索引或GIN索引中自动执行的。事实上,这种扫描也可以在SQL中显式执行。
每个条件渗透对应的CTID。
使用Intersect或Union生成满足总体需求的CTID。(Intersect对应于“and”条件;union对应于“or”条件。)
生成一个ctid数组。
示例
图片来源:unsplash.com/@markusspiske
1. 创建对象提要数据表
postgres=# create table tbl (id int, info text, crt_time timestamp, pos point, c1 int , c2 int, c3 int ); CREATE TABLE
2. 将5000万条测试数据写入表中
postgres=# insert into tbl select generate_series(1,50000000), md5(random()::text), clock_timestamp(), point(180-random()*180, 90-random()*90), random()*10000, random()*5000, random()*1000; INSERT 0 50000000
3. 创建对象索引
postgres=# create index idx_tbl_1 on tbl using gin (info, c1, c2, c3); CREATE INDEX
4. 创建时间索引
postgres=# create index idx_tbl_2 on tbl using btree (crt_time); CREATE INDEX
5. 创建空间索引
postgres=# create index idx_tbl_3 on tbl using gist (pos); CREATE INDEX
6. 生成数据布局以方便后续查询
postgres=# select min(crt_time),max(crt_time),count(*) from tbl; min | max | count ----------------------------+----------------------------+---------- 2017-07-22 17:59:34.136497 | 2017-07-22 18:01:27.233688 | 50000000 (1 row)
7. 创建一个极限KNN查询函数
create or replace function ff(point, float8, int) returns setof tid as $ declare v_rec record; v_limit int := $3; begin set local enable_seqscan=off; -- Force index that exits when scanned rows reach a specific number for v_rec in select *, (pos $1) as dist, ctid from tbl order by pos $1 loop if v_limit $2 then -- raise notice "All matching points returned" return; else return next v_rec.ctid; end if; v_limit := v_limit -1; end loop; end; $ language plpgsql strict volatile; postgres=# select * from ff(point (100,100) ,100,100) ; ff ------------- (407383,11) (640740,9) (26073,51) (642750,34) ... (100 rows) Time: 1.061 ms
8. CTID合并检索
限时特惠:本站每日持续更新海量设计资源,一年会员只需29.9元,全站资源免费下载
站长微信:ziyuanshu688