作者丨STzen

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

最小生成树

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

列子引入

最小生成树算法_百度绿萝算法和石榴算法精髓是什么_carma算法 apriori算法

如图假设v0到v8表示9个村庄,现在需要在这9个村庄假设通信网络。村庄之间的数字代表村庄之间的直线距离,求用最小成本完成这9个村庄的通信网络建设。

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

分析

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

最小生成树

如果无向连通图是一个网图,那么它的所有生成树中必有一颗是边的权值总和最小的生成树,即最小生成树。

找到连通图的最小生成树,有两种经典的算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

一、普里姆算法

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

普利姆算法步骤

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

实现代码

#include 
#include 

#define MAXEDGE 20
#define MAXVEX 20
#define INIFINTY 65535

typedef struct {

    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;

}MGraph;

/**
 * 构建图
 */
void CreateMGraph(MGraph * G){

    int i, j;

    G->numVertexes = 9;  // 9个顶点
    G->numEdges = 15;  // 15条边

    for (i = 0; i G->numVertexes; i++) {  // 初始化图
        for (j = 0; j G->numVertexes; j++) {
            if (i == j)
                G->arc[i][j] = 0;
            else
                G->arc[i][j] = G->arc[j][i] = INIFINTY;
        }
    }

    G->arc[0][1] = 10;
    G->arc[0][5] = 11;

    G->arc[1][2] = 18;
    G->arc[1][8] = 12;
    G->arc[1][6] = 16;

    G->arc[2][3] = 22;
    G->arc[2][8] = 8;

    G->arc[3][4] = 20;
    G->arc[3][7] = 16;
    G->arc[3][6] = 24;
    G->arc[3][8] = 21;

    G->arc[4][5] = 26;
    G->arc[4][7] = 7;

    G->arc[5][6] = 17;

    G->arc[6][7] = 19;

    // 利用邻接矩阵的对称性
    for (i = 0; i G->numVertexes; i++)
        for (j = 0; j G->numVertexes; j++)
            G->arc[j][i] = G->arc[i][j];
}


/**
 * Prime算法生成最小生成树
 */
void MiniSpanTree_Prim(MGraph G){

    int min,i,j,k;

    int adjvex[MAXVEX]; // 保存相关顶点的下标
    int lowcost[MAXVEX]; // 保存相关顶点间边的权值

    lowcost[0] = 0;  // 初始化第一个权值为0,即v0加入生成树
    adjvex[0] = 0; // 初始化第一个顶点下标为0

    for (i = 1; i G.numVertexesi++) {  // 循环除下标为0外的全部顶点
        lowcost[i] = G.arc[0][i];  // 将v0顶点与之右边的权值存入数组
        adjvex[i] = 0; // 初始化都为v0的下标
    }

    for (i = 1; i < G.numVertexesi++) {

        min = INIFINTY; //初始化最小权值
        j = 1;
        k = 0;

        while (j < G.numVertexes) { // 循环全部顶点
            if (lowcost[j] != 0 && lowcost[j] < min) {
                min = lowcost[j];  // 让当前权值变为最小值
                k = j;  // 将当前最小值的下标存入k
            }
            j++;
        }

        printf("(%d, %d)n", adjvex[k], k);  // 打印当前顶点中权值最小的边
        lowcost[k] = 0;             // 将当前顶点的权值设置为0,表示此顶点已经完成任务

        for (j = 1; j < G.numVertexesj++) {  // 循环所有顶点
            if (lowcost[j]!= 0 && G.arc[k][j] < lowcost[j]) {  // 如果下标为k顶点各边权值小于当前这些顶点未被加入生成树权值
                lowcost[j] = G.arc[k][j]; // 将较小的权值存入lowcost相应的位置
                adjvex[j] = k;   // 将下标为k的顶点存入adjvex
            }
        }
    }
}

int main(int argcconst char * argv[]) {

    MGraph G;
    CreateMGraph(&G);
    MiniSpanTree_Prim(G);

    return 0;
}

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

代码解释

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

代码运行结果

百度绿萝算法和石榴算法精髓是什么_carma算法 apriori算法_最小生成树算法

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

二、克鲁斯卡尔算法

普里姆算法是从某一顶点为起点,逐步找各个顶点最小权值的边来构成最小生成树。那我们也可以直接从边出发,寻找权值最小的边来构建最小生成树。不过在构建的过程中要考虑是否会形成环的情况

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

边集数组存储图

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

在直接用边来构建最小生成树的时候,需要用到边集数组结构,代码为:

typedef struct {  // 边集数组
    int begin;
    int end;
    int weight;
}Edge;

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

代码实现

#include 
#include 

#define MAXEDGE 20
#define MAXVEX 20
#define INIFINTY 65535

typedef struct {

    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;

}MGraph;

typedef struct {  // 边集数组
    int begin;
    int end;
    int weight;
}Edge;

/**
 * 构建图
 */
void CreateMGraph(MGraph * G){

    int i, j;

    G->numVertexes = 9;  // 9个顶点
    G->numEdges = 15;  // 15条边

    for (i = 0; i G->numVertexes; i++) {  // 初始化图
        for (j = 0; j G->numVertexes; j++) {
            if (i == j)
                G->arc[i][j] = 0;
            else
                G->arc[i][j] = G->arc[j][i] = INIFINTY;
        }
    }

    G->arc[0][1] = 10;
    G->arc[0][5] = 11;

    G->arc[1][2] = 18;
    G->arc[1][8] = 12;
    G->arc[1][6] = 16;

    G->arc[2][3] = 22;
    G->arc[2][8] = 8;

    G->arc[3][4] = 20;
    G->arc[3][7] = 16;
    G->arc[3][6] = 24;
    G->arc[3][8] = 21;

    G->arc[4][5] = 26;
    G->arc[4][7] = 7;

    G->arc[5][6] = 17;

    G->arc[6][7] = 19;

    // 利用邻接矩阵的对称性
    for (i = 0; i G->numVertexes; i++)
        for (j = 0; j G->numVertexes; j++)
            G->arc[j][i] = G->arc[i][j];
}


/**
 * 交换权值、头、尾
 */
void Swapn(Edge * edges, int i, int j){

    int temp;
    temp = edges[i].begin;
    edges[i].begin = edges[j].begin;
    edges[j].begin = temp;

    temp = edges[i].end;
    edges[i].end = edges[j].end;
    edges[j].end = temp;

    temp = edges[i].weight;
    edges[i].weight = edges[j].weight;
    edges[j].weight = temp;
}

/**
 * 对权值进行排序
 */
void sort(Edge edges[], MGraph *G){

    int i,j;

    for (i = 0;  i G->numEdges; i++) {
        for (j = i+1; j G->numEdges; j++) {
            if (edges[i].weight > edges[j].weight)
                Swapn(edges, i, j);
        }
    }

    printf("权值排序之后为:n");

    for (i = 0;  i G->numEdges; i++) {
        printf("(%d, %d) %dn", edges[i].begin, edges[i].end, edges[i].weight);
    }
}

/**
 * 查找连线顶点的尾部下标
 */
int Find(int * parent, int f){

    while (parent[f] > 0)
        f = parent[f];
    return f;
}


void MiniSpanTree_Kruskal(MGraph G){

    int i,j,n,m;

    int k = 0;

    Edge edges[MAXEDGE]; // 定义边集数组
    int parent[MAXVEX]; // 定义一维数组来判断边与边是否形成回路

    //构建边集数组并排序
    for (i = 0; i G.numVertexes - 1i++) {
        for (j = i+1; j < G.numVertexesj++) {
            if (G.arc[i][j] < INIFINTY) {
                edges[k].begin = i;
                edges[k].end = j;
                edges[k].weight = G.arc[i][j];
                k++;
            }
        }
    }
    sort(edges, &G);


    for (i = 0; i < G.numVertexesi++) {
        parent[i] = 0;
    }

    printf("打印最小生成树:n");
    for (i = 0;  i < G.numEdgesi++) {
        n = Find(parent, edges[i].begin);
        m = Find(parent, edges[i].end);

        if (n != m) {
            parent[n] = m;
            printf("(%d, %d) %dn",edges[i].beginedges[i].end
                   , edges[i].weight);
        }
    }
}

int main(int argcconst char * argv[]) {

    MGraph G;
    CreateMGraph(&G);
    MiniSpanTree_Kruskal(G);

    return 0;
}

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

代码解释

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

运行结果

carma算法 apriori算法_百度绿萝算法和石榴算法精髓是什么_最小生成树算法

对比普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法

克鲁斯卡尔(Kruskal)算法主要针对边来展开,边数较少时效率非常高最小生成树算法最小生成树算法,所以对于稀疏图有很大的优势;

普里姆(Prim)算法对于稠密图,边数非常多的情况更好一些。

推荐↓↓↓

【】都在这里!

涵盖:程序员大咖、源码共读、程序员共读、数据结构与算法、黑客技术和网络安全、大数据科技、编程前端、Java、Python、Web编程开发、Android、iOS开发、Linux、数据库研发、幽默程序员等。

限时特惠:本站每日持续更新海量设计资源,一年会员只需29.9元,全站资源免费下载
站长微信:ziyuanshu688